1 Introduction

The Global Digital Format Registry (GDFR) will provide sustainable services to store, discover, and deliver important representation information about digital formats. A format is the set of syntactic and semantic rules for serializing an abstract information model, an expression of exchangeable knowledge. The format of a digital object must be known in order to interpret the information content of that object properly. Without knowledge of its format, a digital object is merely a collection of undifferentiated bits. Thus, format typing is fundamental to the effective use, interchange, and preservation of all digitally-encoded content.

The wide diversity and rapid pace of adoption and abandonment of digital formats present an ongoing problem for long-term preservation efforts. The purpose of the GDFR is to address this concern by providing a sustainable resource for managing format-critical representation information necessary to the preservation function.

2 Format model

Informally, a format is a byte-wise serialization of an abstract information model. More rigorously, a format can be defined in terms of four conceptual entities:

- Information Model (IM) – a class of exchangeable knowledge.
- Semantic Model (SM) – a set of semantic information structures capable of realizing the meaning of the IM.
- Syntactic Model (CM) – a set of syntactic data units capable of expressing the SM.
- Serialized Byte Stream (SB) – a sequence of bytes capable of manifesting the CM.

The format-specific rules governing the three-stage transformation between these entities can be defined in terms of the following conceptual encoding functions:

- Semantic Encoding (SE) – a mapping from the exchangeable knowledge of an IM to the semantic information structures of an SM.

 \[SE : IM \rightarrow SM \]

- Syntactic Encoding (CE) – a mapping from the semantic structures of an SM to the syntactic data units of an CM.

 \[CE : SM \rightarrow CM \]

- Serialized Byte Stream Encoding (BE) – a mapping from the syntactic units of a CM to the serialized bytes of an SB.

 \[BE : CM \rightarrow SB \]

Thus, a format \(F \) is the class defined by the 3-tuple, \(F = (SE, CE, BE) \).

In practice, the formal specifications for many formats often co-mingle the rules for semantic and semantic encodings. Similarly, most processes that operate on formatted byte streams do not do so with
clear demarcation between these three conceptual levels. Nevertheless, the model is useful for defining the semantics of inter-format relationships in a formal manner.

3 Relationships

Many digital formats exist in associative relationships with other formats. These relationships are an important component of the format representation information managed by the GDFR.

3.1 Extension

The extension relationship is defined in terms of substitutability. Format B is an extension of format A if:

- The SE of A is a proper subset of the SE of B; and
- The CE of A is a subset of the CE of B; and
- The BE of A is a subset of the BE of B.

In other words, B is an extension of A if all instances of A are also instances of B, but not all instances of B are instances of A since the SE of B will contain additional mapping rules not found in the SE of A.

The extension relationship is transitive, in other words, the fact that format C is an extension of format B, which is itself an extension of format A, necessarily implies that format C is an extension of format A.

Example UTF-8 is-extension-of ASCII

All valid ASCII byte streams can be used in the context of any UTF-8-aware process without any loss of ASCII-enabled semantic function. Using a valid UTF-8 byte stream in the content of an ASCII-only-aware process may result in some loss of UTF-8-enabled semantic function.

Example DNG (Digital Negative) is-extension-of TIFF 6.0

3.2 Restriction

The restriction relationship is the inverse of extension. Format B is a restriction of format A if:

- The SE of B is proper subset of the SE of A; and
- The CE of B is a subset of the CE of A; and
- The BE of B is a subset of the BE of A.

In other words, B is a restriction of A if all instances of B are also instances of A, but not all instances of A are instances of B since the SE of A will contain additional mapping rules not found in the SE of B.

The restriction relationship is transitive, in other words, the fact that format C is a restriction of format B, which is itself a restriction of format A, necessarily implies that format C is a restriction of format A.

Example PDF/A-1 is-restriction-of PDF 1.4

Example Model Imaged Object Profile is–restriction-of METS

Note The fact that format A is an extension of format B necessarily implies that format B is a restriction of format A, and vice versa. Thus, the choice of which relationships to use to define the association is arbitrary. As a best practice, the one that is consistent with the temporal relationship of the associated formats should be used. Since PDF 1.4 was defined prior to PDF/A if makes better sense to say that PDF/A is a restriction of PDF 1.4. In other words, the
selected relationship should use the temporally antecedent format as its source and the subsequent format as its target, e.g. “<previous-format> is-restriction-of <subsequent-format>” or <subsequent-format> is-extension-of <previous-format>.

3.3 Modification

Both extension and restriction are specific instances of a more general modification relationship. Format B is a subclass of format A if:

• The SE of A and B can be split into two disjoint parts SE₁ and SE₂ such that SE₁ of B is a proper subset of the SE₁ of A and the SE₂ of A is a proper subset of the SE₂ of B; and
• The CE of A and B can be split into two disjoint parts CE₁ and CE₂ such that CE₁ of B is a subset of the CE₁ of A and the CE₂ of A is a subset of the CE₂ of B; and
• The BE of A and B can be split into two disjoint parts BE₁ and BE₂ such that BE₁ of B is a subset of the BE₁ of A and the BE₂ of A is a subset of the BE₂ of B; and

Example BWF (Broadcast Wave Format) is-modification-of WAVE

BWF both extends and restricts the baseline WAVE format, defining an additional Broadcast Audio Extension (“bext”) chunk and only allowing LPCM (linear pulse code modulation) audio. Neither extension nor restriction strictly applies since there are cases where a BWF cannot be used in a WAVE context without loss of function, e.g. dependencies on the “bext” chunk, and there are cases where a WAVE cannot be used in a BWF context, e.g. non-LPCM sampling.

3.4 Definition

The definition relationship indicates the means by which a modification (or its more specific variants, restriction or extension) relationship is expressed.

Example NITF (News Industry Text Format) is-defined-by XML DTD.

Example Office Open XML is-defined-by XML Schema.

Example ODF (Open Document Format) is-defined-by Relax NG.

Note In all three of these examples the source format (NITF, Office Open XML, ODF) also is-restriction-of XML.

3.5 Requisite

The requisite relationship indicates that an understanding of the otherwise unrelated target format is significant to an understanding of the source format.

Note The fact that format A is-modification-of format B and A is-defined-by C implies that B is-requisite-for C.

Example XML is-requisite-for Relax NG.

Note ODF is-restriction-of XML and ODF is-defined-by Relax NG.
3.6 Containment

The containment relationship indicates an encapsulation association.

Format A contains format B if:

- The SE of B is a proper subset of the SE of A; and
- The CE of B is a subset of the CE of A; and
- The BE of B is a subset of the BE of A.

Containment can be qualified with respect to its obligation:

- Optional containment, in which the encapsulation is permitted but not required (“can contain”)
- Mandatory containment, in which the encapsulation is required (“must contain”)

Example ZIP can contain any format

Example PDF/A-1 must contain XMP (Extensible Metadata Platform)

3.7 Equivalence

The equivalence relationship indicates that the association between formats at the level of SE and/or CE.

Format B is semantically equivalent to format A if:

- The SE of format B is identical to the SE of format A; and
- The CE of format B is not identical to the CE of format A; and
- The BE of format B is not identical to the BE of format A.

Format B is syntactically equivalent to format A if:

- The SE of format B is identical to the SE of format A; and
- The CE of format B is identical to the CE of format A; and
- The BE of format B is not identical to the BE of format A.

Example TIFF (little-endian) is syntactically equivalent to TIFF (big-endian)

Example DXF (ASCII) is semantically equivalent to DXF (binary)

3.8 Version

The version relationship implies a change to the baseline function of previous version of a format within a recognized “familial” context, generally indicated by product identification. Version comes in two temporal forms, older version and newer version, and can be defined in either temporal direction, e.g. “<previous-format> is an previous version of <subsequent-format>” or “<subsequent-format> is a subsequent version of <previous-format>”.

The version relationships are complements of each other, in other words, the fact that format B is a newer version of format A, necessarily implies that format A is an older version of format B.

A newer version may be, but is not necessarily, an extension of the older. Similarly, an older version may be, but is not necessarily, a restriction of the newer.

Example Word 6.0 is subsequent-version of Word 97
Example HTML 4.0 is-previous-version of HTML 4.01

3.9 Affinity

The *affinity* relationship holds between two formats that have a significant technical resemblance to each other but that do not meet the formal requirements of any of the other relationship types.

Example SPIFF has-affinity-to JPEG

Example Word 6.0 has-affinity-to Word 97

Note The version and affinity relationships are both subjective rather than being based on strictly definable relationships between the *SE*, *CE*, and *BE* of the associated formats.