\LaTeX\ Cheatsheet

by Charlie Zender
University of California at Irvine

Department of Earth System Science
University of California
Irvine, CA 92697-3100

Copyright \copyright\ 2000–2005, Charles S. Zender
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. The license is available online at http://www.gnu.ai.mit.edu/copyleft/fdl.html.

Contents

List of Figures i
List of Tables 1

1 Introduction 1

2 \LaTeX\ Installation 2
  2.1 Personal packages ........................................ 2
  2.2 Hyphenation ............................................. 2

3 Output Formats 3
  3.1 ps2pdf ................................................ 3
  3.2 a2ps .................................................. 3
  3.3 mpage ................................................ 3
  3.4 ps2epsi ................................................ 4
  3.5 epsffit .............................................. 4
  3.6 Posters ............................................. 4
  3.7 dvips ................................................ 4
  3.8 PDFTeX ............................................ 5
    3.8.1 Viewing ........................................ 5
    3.8.2 hyperref ....................................... 6
    3.8.3 Manipulating .................................... 7
    3.8.4 pdfscreen ..................................... 7
    3.8.5 thumbpdf .................................... 7


zender@uci.edu
Voice: (949) 824-2987
Fax: (949) 824-3256
CONTENTS

3.8.6 pdfthumb .................................................. 8
3.9 Tables .......................................................... 8
3.9.1 epstopdf ..................................................... 8
3.9.2 Upgrading ................................................... 9

4 Using \LaTeX ..................................................... 10
4.1 NFSS ............................................................ 10
4.1.1 usefont ...................................................... 10
4.1.2 suffixes ...................................................... 11
4.2 Dependencies .................................................. 11
4.3 Citations ....................................................... 11
4.4 Dates and Times ............................................... 11
4.5 Indicating Definitions, Commands, Files ..................... 11
4.6 \TeXInfo ...................................................... 11
4.6.1 Inserting \TeX into \TeXInfo ............................... 13
4.6.2 Texi2html .................................................. 13
4.6.3 Texi2latex .................................................. 13
4.6.4 Tth .......................................................... 13
4.6.5 Tex4ht ...................................................... 14
4.7 HTML/SGML ................................................... 14
4.8 Indexing ....................................................... 17
4.9 Line Numbering ............................................... 17
4.10 Vertical Spacing .............................................. 18
4.11 Horizontal Spacing ......................................... 18
4.12 Verbatim ..................................................... 18
4.13 CVS .......................................................... 18
4.14 Watermarks ................................................... 18
4.15 Symbols ....................................................... 19
4.16 Graphics ...................................................... 20
4.16.1 Clipping and Rotation ................................... 21
4.17 Trademarks ................................................... 21
4.18 Currencies ................................................... 21
4.19 Acronyms and Abbreviation ................................ 22
4.20 Text Samples with math $\alpha$ .............................. 22

5 Text Typography ................................................ 23
5.1 Gothic .......................................................... 23
5.2 Text Fonts ..................................................... 23

6 Math ............................................................... 25
6.1 Math Conventions .............................................. 25
6.2 Math Equations ............................................... 25
6.3 Math Fonts ..................................................... 26
6.4 Math Samples .................................................. 26
1 Introduction

Someone once said that the best way to learn a language was to speak it. This is my attempt to learn \LaTeX, one of the most challenging and useful languages ever devised. This section is devoted to introductory material and matters generic to typography. Section 2 describes \LaTeX installation and maintenance, Section 4 contains hints on using \LaTeX, Section 5 is devoted to text typography, Section 6 covers formatting mathematics.

\foo is undefined Incidentally, the first letter of the preceding paragraph was “dropped” by calling the \bigdrop macro defined by the dropcaps.sty package: \bigdrop0pt3cmr10Someone.... Another package capable of handling large first letters of paragraphs is the lettrine.sty package. Most of the documentation for lettrine appears to be in French, however.
2 \LaTeX{} Installation

This section describes \LaTeX{} installation, maintenance, and upgrades. Thanks to Thomas Esser for producing \texttt{tetex}, the \TeX{} distribution that I use.

Many Olympian \TeX{} and \LaTeX{} gurus do not like the RedHat GNU/Linux installation. Apparently RedHat does not change the \texttt{tetex} defaults from their European settings. This may cause vertical margins to change in weird ways, e.g., in printouts but not in \texttt{ghostview}, or in \texttt{acroread} but not in \texttt{xdvi}. When this occurs the solution is to reconfigure \TeX{} by running \texttt{texconfig} as root:

```
sudo texconfig dvips paper letter
taxconfig xdvi us
```

2.1 Personal Packages

The \texttt{TEXINPUTS} and \texttt{BIBINPUTS} environmental variables determine the \TeX{} search path. These should be set in startup files, e.g., \texttt{.bashrc}:

```
export TEXINPUTS=".:${HOME}/tex//:${HOME}/crr//:${DATA}/ps//: \\
${TEXMFDIR}/pdftex//:${TEXMFDIR}/tex//::"
export BIBINPUTS=".:${HOME}/tex//:${TEXMFDIR}/bibtex//::"
```

If these variables are not set then packages must be in the current directory or the default system search paths. The :: activates the default system search paths. The // indicates that directories beneath the specified directory should be searched recursively. These symbolic links should not be necessary when \texttt{TEXINPUTS} contains \texttt{${HOME}/tex//}:

```
sudo ln -s ${HOME}/tex/nearletter.cls ${HOME}/tex/cls/nearletter.cls
sudo ln -s ${HOME}/tex/zenletter.cls ${HOME}/tex/cls/zenletter.cls
sudo ln -s ${HOME}/tex/bib.bib ${HOME}/tex/cls/bib.bib
sudo ln -s ${HOME}/tex/css.sty ${HOME}/tex/cls/css.css
sudo ln -s ${HOME}/tex/jgr_abb.tex ${HOME}/tex/cls/jgr_abb.tex
sudo ln -s ${HOME}/tex/pdftex.tex ${HOME}/tex/cls/pdftex.tex
sudo ln -s ${HOME}/tex/bst ${TEXMFDIR}/bibtex/bst
```

2.2 Hyphenation

Check to be sure hyphenation works when documents look poorly hyphenated Ubuntu \TeX{} upgrades have a habit of breaking hyphenation. The other symptom (besides bad hyphenation) is the header line “Babel ¡v3.8d¡ and hyphenation patterns for loaded”. A list of languages should be between “for loaded”. Somehow this file gets corrupted: These commands may help:

```
sudo mv /etc/texmf/language.d/00tetex.cnf /etc/texmf/language.d/10tetex.cnf
sudo update-language
sudo fmtutil-sys --all
```
3 Output Formats

Using \LaTeX\ to produce PDF files is lots of fun. There is an entire NSF website devoted to this topic.

3.1 ps2pdf

The ps2pdf program converts complex Postscript files into PDF files. ps2pdf is the Ghostscript replacement for Adobe Distiller. A distiller killer, you might say. It is highly configurable; full details are available here.

```
ps2pdf -dMaxSubsetPct=100 -dCompatibilityLevel=1.2 -dSubsetFonts=true \n-dEmbedAllFonts=true -sAutoRotatePages=PageByPage \n-sColorConversionStrategy=LeaveColorUnchanged in.ps out.pdf
```

The AutoRotatePages and ColorConversionStrategy switches are important when converting slide presentations. The EmbedAllFonts option tells ps2pdf to embed all fonts in the output file. This makes the output file more portable.

The ghostscript command to convert Postscript into PDF was posted to comp.text.tex on 20040825:

```
gs -dSAFER -dNOPAUSE -dBATCH -sDEVICE=pdfwrite -sPAPERSIZE=letter \n-dPDFSETTINGS=/printer -dCompatibilityLevel=1.3 -dMaxSubsetPct=100 \n-dSubsetFonts=true -dEmbedAllFonts=true -sOutputFile=foo.pdf \nfoo.ps
```

With teTeX, one can tell all DVI manipulators (including pdftex, xdvi, dvips) to embed fonts by using one command. The updmap command alters the font configuration files of all these programs under teTeX:

```
sudo updmap --setoption pdftexDownloadBase14 true
```

3.2 a2ps

The a2ps program converts text files to Postscript

```
a2ps --no-header fl.txt
a2ps --no-header fl.txt -o fl.ps
a2ps --columns=80 --font-size=12 --lines-per-page=52 --no-header fl.txt -o fl.ps
```

3.3 mpage

The mpage program combines multiple pages onto one page:

```
mpage -R -8 -Phplj5l ${DATA}/ps/ess_atm_lct_01.ps
mpage -R -8 ${DATA}/ps/ess_atm_lct_03.ps > ${DATA}/tmp/lct.ps
mpage -R -4 ${DATA}/ps/ess_atm_lct_01.ps > ${DATA}/tmp/lct.ps
gv ${DATA}/tmp/lct.ps &
```
3 OUTPUT FORMATS

3.4 ps2epsi

The ps2epsi program recomputes the minimal possible bounding box of Postscript and Enscapsulated postscript files.

```
ps2epsi foo.ps foo.eps
```

3.5 epsffit

The epsffit program permits rescaling bounding boxes Enscapsulated postscript files, as well as rotating them. The following doubles the natural size of an image with original bounding box = [0,0,141,510], and rotates the image by 90° counter-clockwise:

```
% cat foo.eps | epsffit -r 0 0 282 1020 > foo_90.eps
```

epsffit coordinate arguments are: [llx,lly,urx,ury] in Postscript units (points), i.e., [lower-left x, lower-left y, upper-right x, upper-right y].

3.6 Posters

Creating conference posters using LaTeX is not well documented. The a0poster package is designed to hold conference posters. epssplit can break up a poster into letter (or A4) sized pieces, which you can then put back together like a big jigsaw puzzle. First, though, you may need to turn your poster into an EPS file using ghostscript, gs:

```
gs -q -sDEVICE=epswrite -sOutputFile=${DATA}/ps/pst_ZNT03.eps -r600 -q - < ${DATA}/ps/pst_ZNT03.ps
epssplit -o ${DATA}/ps/pst_ZNT03_mlt.ps -mar 2.5mm ${DATA}/ps/pst_ZNT03.eps
```

Use psresize to resize the poster to fit onto a single page. Default units are points, but either cm or in may be specified for centimeters or inches, respectively.

```
psresize -W1106 -H905 -w2728.575 -h3334.59 ${DATA}/ps/pst_ZNT03.ps ${DATA}/ps/pst_ZNT03_ltr.ps
```

Poster sizes should take advantage of common large format printer sizes. The most common printer widths are 36 and 42 inches. The UCI ImageWorks print shop ((949) 824-6414, Natural Sciences I, Room 2112) charges about $10 + $12 ft$^{-1}$ for 36 inch-wide posters, and $15 + $15 ft$^{-1}$ for 42 inch-wide posters.

3.7 dvips

The dvips program converts DVI files to Postscript files. It also helps generate other formats such as PDF.

```
dvips -o nco.ps nco.dvi # Convert DVI to Postscript
```

One very important feature of dvips is that it may be used to generate beautiful PDF files without having to invoke pdflatex. This is accomplished by setting the dvips output pipe to PDF.
dvips -Ppdf -G0 -o nco.ps nco.dvi # Convert to Postscript intermediate, then PDF
ps2pdf -Ppdf -G0 nco.ps nco.pdf # Convert Postscript to PDF

The resulting PDF file does not preserve the helpful PDF features, such as hyperlinks, but it does appear as intended in PDF readers such as acroread. This procedure is very useful when pdflatex does not work, e.g., for complicated files, or when the source is in some other format, e.g.,TEXInfo.

Unfortunately, the -Ppdf switch may typeset ligatures such as “fi” or “ff” incorrectly. The solution is to add the -G0 switch, or to upgrade to more recent versions of dvips. It is also recommend to add -Pcmz and -amz switches. This is explained in the\TeX FAQ.

Another feature of dvips is its ability to produce EPS (Encapsulated Postscript) files from all or parts of a document.

dvips -Ppdf -G0 -E -i -o rt.ps rt.dvi # Convert to Postscript intermediate, then PDF

3.8 PDFTeX

PDFTeX, by Hán Thế Thanh, is a micro-typographic extensions to the\TeX typesetting system. PDFTeX produces PDF output directly, rather than using a PostScript converter such as ghostscript. Prof. Dr. Hans Hagen contributed much to the development of PDFTeX. Hagen runs a private company, Pragma Advanced Document Engineering, that supports a macro package for\TeX called ConTeXt.

PDFTeX tends to give inscrutable error messages. For more informative diagnostics, invoke with pdflatex -k 255 foo.tex.

There are two distinct commands that de-L\TeX files,\detex and\untex. These converters are really L\TeX-strippers—they only do a good job of preserving unformatted text. A good alternative for formatted text is to convert the PDF file (rather than the\LaTeX file), to text.\pdftotext accomplishes this.

Foiltex requires the dvips option in order to produce landscape mode foils. The hyperref package interferes with Foiltex and breaks the rotating capability.

3.8.1 Viewing

The three free readers acroread, ghostview, and xpdf all display PDFTeX files. The Adobe-supplied acroread was intensionally crippled to not refresh documents on the fly. To circumvent this, keep another document open, then use C-w to close the document and C-o to open the file again. However, acroread does have the nice ability to convert PDF to Postscript using, e.g.,

acroread -help # Print acroread options
acroread -toPostScript -level2 -size letter -pairs -shrink fl_nm.pdf fl_nm.ps
for fl in ‘ls *.pdf‘ ; do
acroread -toPostScript -level2 -size letter -pairs -shrink ${fl} ${fl/pdf/pdf.ps}
done
for fl in ‘ls *.ps‘ ; do kprinter ${fl}; done
3.8.2 hyperref

The \texttt{hyperref} package provides most of the \LaTeX{}'s interface to the Web-aware features of PDF files supported by pdflatex. PDF files support links within documents, and between the document and the World Wide Web (WWW). pdflatex automatically converts most syntactically useful document entry points to internal links. For example, the first section of an article format document will be linked to the internal name \texttt{section.1}. Hence the first section of a document \texttt{foo.pdf} stored at \texttt{http://foo.com/doc.pdf} has the global URL \texttt{http://foo.com//doc.pdf#section.1}.

\LaTeX{} documents create active links to such URLs with the \texttt{\href} command. For example, the following links should actively point to this particular section of this document as an \texttt{internal link} and as an \texttt{external link}, respectively.

\begin{verbatim}
as an \href{subsubsection.2.5.2}{internal link} and as an \href{http://dust.ess.uci.edu/doc/ltx/ltx.pdf#subsubsection.2.5.2}{external link},
\end{verbatim}

\texttt{The \href macro can access “local” URLs. This local file link accesses the hyperref-generated link to Section 5 through the HTTP file:// protocol:}

\begin{verbatim}
This \href{file:///data/zender/ps/ltx.pdf#section.4}{active link} ...
\end{verbatim}

When a local file link points to the file being viewed, the viewer (e.g., xpdf) jumps to the link without spawning a new viewer. Local file links are better accomplished with the standard \LaTeX{} \texttt{\label} and \texttt{\ref} macros. Nonetheless, \texttt{hyperref} automatically generates labels at standardized locations in many document types.

\texttt{The \href macro is more useful for accessing remote URLs. This remote URL link should access the hyperref-generated link to Section 5 through the HTTP http:// protocol:}

\begin{verbatim}
\href{http://dust.ess.uci.edu/doc/ltx/ltx.pdf#section.4}{remote URL link}
\end{verbatim}

To resolve remote URLs, the current viewer spawns a new viewer process (probably based on the default handler for the mime-type, in this case PDF) to download and display the remote document. Unfortunately, no viewers seem intelligent enough to open the remote document to the specified section. In other words, the viewer downloads the remote document correctly, and then the new viewer opens the document to Page 1, rather than to the specified section (Section 5 in this case).

\texttt{hyperref provides the following macros for fine-grained control:}

\begin{verbatim}
\hyperdef{category}{name}txt % Mark text with category.name
\hyperref{URL}{category}{name}{text} % Link text to URL#category.name
\hyperbaseurl{URL} % Prepend URL to following URLs
\hypertarget{sxn:abb}{} % fxm
\end{verbatim}

Samples of these macros for generic situations are

\begin{verbatim}
\hyperref{sxn}{}{} % fxm
\hyperref{}{sxn}{abb}{fxm} % Link text to URL#category.name
\hypertarget{sxn:abb}{} % fxm
\end{verbatim}
Actual targets that work in typical situations are

```
\hyperbaseurl{file:///data/zender/ps/abb.pdf}
\hypertarget{sxn:abb}{}
```

The \hypertarget command sets fxm.

### 3.8.3 Manipulating

It is often helpful to manipulate a PDF document using native PDF tools so that no lossy conversions to other formats (e.g., Postscript) need be done. The PDF toolkit `pdftk` is useful for this. From the `pdftk` homepage:

```
If PDF is electronic paper, then pdftk is an electronic staple-remover, hole-punch, binder, secret-decoder-ring, and X-Ray-glasses
```

`PDFTk` may be used to merge, split, decrypt, encrypt, burst, uncompress, and repair PDF files. To extract subsets of pages from a PDF document,

```
pdftk A=${DATA}/ps/prp_itr.pdf cat A2 output ~/prp_itr_smr.pdf
```

### 3.8.4 `pdfscreen`

Another useful package is `pdfscreen`. `pdfscreen` relies heavily on `hyperref` and a number of other packages. I have installed the entirety of `pdfscreen` in `${TEXMFDIR}/tex/latex/pdfscreen`. However, only `pdfscreen.sty` and a few other files in the directory are strictly required for the installation to work. This should be fixed so the TeX directory does not cruft up. Printing `pdfscreen` presentations is sometimes useful. To do this, set

```
pdtpagemode={FullScreen}, % Starts in full screen mode, hit 'Esc' to escape
pdfmenubar=true % Allow access to reader’s menubar
```

in the `\hypersetup` portion of the preamble. This will start the presentation in full screen mode and make the reader (e.g., `acroread`) menubar available once the presentation is “escaped” using, e.g., `Esc`.

### 3.8.5 `thumbpdf`

PDF files have the capability to show thumbnails, reduced-size images of each page. The various TeX engines do not generate thumbnails automatically (since they are), so that some intervention is required to insert them in the final PDF document. The two freely available methods are the `thumbpdf` package, by Heiko Oberdiek, and `pdfthumb`, a part of the `PPower4` (`P^4`) project. The typical usage of `thumbpdf` is

```
pdflatex ltx.tex;thumbpdf ltx;pdflatex ltx.tex
```

The `thumbpdf` package may also be used in Postscript processing This is accomplished by setting the `dvips` output pipe to PDF
3 OUTPUT FORMATS

dvips -Ppdf -G0 -o ${DATA}/ps/ltx.ps ltx.dvi
thumbpdf --modes=dvips --level2 --useps ${DATA}/ps/ltx.ps
dvips -Ppdf -G0 -o ${DATA}/ps/ltx.ps ltx.dvi
ps2pdf ${DATA}/ps/ltx.ps ${DATA}/ps/ltx.pdf
pdf2ps ${DATA}/ps/ltx.pdf ${DATA}/ps/ltx.ps

3.8.6 pdfthumb

The P^4 \url{http://www-sp.iti.informatik.tu-darmstadt.de/software/ppower4} project created the PDF Presentation Post Processor. Install this package in generic directories then create thumbnail additions to any PDF file.

sudo mkdir ${TEXMFDIR}/tex/generic/ppower4
sudo mv *.sty ${TEXMFDIR}/tex/generic/ppower4
sudo mv ppower4 pdfthumb /usr/local/bin
pdfthumb in.pdf out.pdf
pdfthumb nco.pdf nco.pdf2;/bin/mv nco.pdf2 nco.pdf

3.9 Tables

Tables are perhaps the most difficult-to-master aspect of \LaTeX. Use the \texttt{rotating.sty} package to rotate tables.

\begin{sidewaystable}
\end{sidewaystable}

When large portions of text (many pages) are to be printed sideways, then landscape mode is called for. Footnotes in tables are also tricky.

3.9.1 epstopdf

PDF\TeX does not recognize *.eps files directly. Instead these must be converted to PDF-format with \texttt{epstopdf}. The \texttt{epstopdf} package by Heiko Oberdiek is very useful when using PDF\TeX.

for fl in `ls *.eps` ; do
    epstopdf ${fl}
done

The package \texttt{epstopdf.sty} does this automatically. It converts Postscript (*.ps) and encapsulated Postscript (*.eps) files to PDF files (*.pdf) automatically (using \texttt{epstopdf}) if the PDF files do not already exist. However, this capability is intrinsically somewhat insecure since it involves allowing \LaTeX to run shell commands. Hence, \texttt{epstopdf} is not installed by default and special permissions must be set to activate it. To enable this feature at run-time use, e.g., \texttt{pdflatex -shell-escape test.tex}. To permanently enable this feature for the whole distribution set \texttt{shell_escape = 1} in configuration file \texttt{texmf.cnf}. 
3.9.2 Upgrading

Upgrading PDFTeX:

cd ${DATA}/tmp;mkdir pdftex;cd pdftex
gunzip pdftex-20010806-linux.zip
./configure --prefix=/usr --datadir=/usr/share
make
sudo mv /usr/bin/pdfetex /usr/bin/pdftex /usr/bin/ttf2afm /data/zender/bck
sudo mv ${TEXMFDIR}/web2c/pdftex.pool ${TEXMFDIR}/web2c/pdfetex.pool /data/zender/bck
sudo cp pdfetex pdftex ttf2afm pdftosrc /usr/bin
sudo cp pdfetex.pool pdftex.pool $(TEXMFDIR)/web2c
sudo texhash

cd ${DATA}/tmp;mkdir pdftex;cd pdftex
sudo mv pdfetex-20010806.tgz ${DATA}/tmp/pdftex
tar xvzf pdfetex-20010806.tgz
cd src
./configure --prefix=/usr/share
cd texk/web2c
make pdfetexbin
cd ${DATA}/tmp/pdfetex/src/texk/web2c
sudo cp pdfetex pdfetex ttf2afm pdftosrc /usr/bin
sudo cp pdfetex.pool pdfetex.pool $(TEXMFDIR)/web2c

Binaries and pool files are located in the directory ${DATA}/tmp/pdfetex/src/texk/web2c.
You must regenerate .fmt files pdftex.fmt and pdflatex.fmt after installing a new version of the PDFTeX binary and pdfetex.pool files.

pdftex -ini -fmt=pdftex plain \dump
pdftex -ini -fmt=pdflatex latex.ltx

or

sudo fmtutil --byfmt pdfetex
sudo fmtutil --byfmt pdflatex

Apparently, texconfig init may do both in one fell swoop.
Then update the graphics .def file to the newest version at http://www.ctan.org/tex-archive/macros/pdftex/graphics/pdftex.def

find /usr/share/ -name pdftex.def
cd $(TEXMFDIR)/tex/latex/graphics/
sudo mv pdftex.def pdftex.def.orig
sudo cp ~/pdftex.def .
### Table 1: Font Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encoding</td>
<td>OT1 OT2 T1 OML OMS OMX U</td>
</tr>
<tr>
<td>Family</td>
<td>cmr cmss cmtt</td>
</tr>
<tr>
<td></td>
<td>Computer modern roman, Computer modern sans serif, Computer modern typewriter</td>
</tr>
<tr>
<td>Series (weight)</td>
<td>ul el l sl m sb b eb ub</td>
</tr>
<tr>
<td></td>
<td>Ultralight, Extralight, Light, Semilight, Medium, Semibold, Bold, Extrabold, Ultrabold</td>
</tr>
<tr>
<td>Series (width)</td>
<td>uc ec c sc m sx x ex ux</td>
</tr>
<tr>
<td></td>
<td>Ultracondensed, Extracondensed, Condensed, Semi-condensed, Medium, Semi-expanded, Expanded, Extra-expanded, Ultra-expanded</td>
</tr>
<tr>
<td>Shape</td>
<td>n it sl sc u</td>
</tr>
<tr>
<td></td>
<td>Normal, Italic, Slanted, Small caps</td>
</tr>
<tr>
<td>Size</td>
<td></td>
</tr>
</tbody>
</table>

*Sources: Kopka and Daly (1999, 2004)*

## 4 Using \LaTeX

### 4.1 NFSS

The font scheme used in \LaTeX is known as the *New Font Selection Scheme* (NFSS). NFSS recognizes five distinct font attributes: *encoding*, *family*, *series*, *shape*, and *size* which may be set individually with the commands

\begin{verbatim}
fontencoding{encode},
fontfamily{fam},
fontseries{wt_wth},
fontshape{form}, and
fontsize{line_sp}. The font *series* consists of two values, weight and width, concatenated sequentially into one argument, *wt_wth* of between one and four characters, e.g., *ebsc*. The font *size* takes two separate arguments, the point size of the font and the value of `\baselineskip`. Table 1 shows sample values for each font attribute. \LaTeX comes with an interactive document which prints font tables on demand.

latex $\text{\$TEXMFDIR}/tex/latex/base/nfssfont.tex$

Name of the font to test = ygoth
\help
\sample
\bye

#### 4.1.1 \usefont

Fonts may be swiftly changed with the \usefont macro. This macro takes four arguments:
\usefont.
Table 2: **Filename Suffixes**

<table>
<thead>
<tr>
<th>Suffix</th>
<th>Example</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>.tfm</td>
<td>pplr.tfm</td>
<td></td>
</tr>
</tbody>
</table>

*Sources: Kopka and Daly (1999, 2004)*

4.1.2 **suffixes**

Table 2 shows the conventional meaning of some of the filename suffixes in the \LaTeX universe. Some characters such as are hard to access. For this purpose, use the \symbol command (Kopka and Daly, 1999, p. 63). For example, \symbol{126} produces ˜, the tilde symbol.

4.2 **Dependencies**

Building and maintaining complex \LaTeX files is non-trivial and requires effort similar to maintaining a complex model. There are two ways to keep track of the dependencies of a source file. The first is to add the command \listfiles somewhere in the document preamble. This causes \LaTeX to print the file dependencies to screen during processing. The second is to add the command \RequirePackage{snapshot} before the \documentclass command. This will generate a dependency file (*.dep) file.

4.3 **Citations**

Here we try some typical \LaTeX bibliographic citations

1. Recommended format for citing URLs is demonstrated by invoking \cite{Zen01b}: Zender (2001)

4.4 **Dates and Times**

The datetime.sty package provides fine control for printing dates and times. It provides the \xxivtime and \ordinal commands.

4.5 **Indicating Definitions, Commands, Files**

It is helpful to indicate what type of object text refers to. For example, the \TeXInfo documentation system discriminates between 15 types of text object. Not all those types are relevent here since, e.g., \LaTeX has superb citation handling ability already. Table 3 list the types of text objects that appear in this documentation, and the commands necessary to indicate that type of text. For consistency, most object types are defined exactly as in \TeXInfo.

4.6 **\TeXInfo**

A large suite of tools is available for manipulating \LaTeX and \TeXInfo documents.
### Table 3: Text Object Types

<table>
<thead>
<tr>
<th>Command</th>
<th>Alternate</th>
<th>Example</th>
<th>Result</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>\acronym</td>
<td>\acr</td>
<td></td>
<td>Acronym</td>
<td></td>
</tr>
<tr>
<td>\cite</td>
<td></td>
<td></td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>\code</td>
<td></td>
<td></td>
<td>Program code</td>
<td></td>
</tr>
<tr>
<td>\command</td>
<td>\cmdprn</td>
<td></td>
<td>Command name</td>
<td></td>
</tr>
<tr>
<td></td>
<td>\cmdltxprn</td>
<td></td>
<td>\TeX Command name</td>
<td></td>
</tr>
<tr>
<td>\dfn</td>
<td>\trmdfn</td>
<td></td>
<td>Definition</td>
<td></td>
</tr>
<tr>
<td>\email</td>
<td></td>
<td></td>
<td>Electronic mail address</td>
<td></td>
</tr>
<tr>
<td>\env</td>
<td></td>
<td></td>
<td>Environment variable</td>
<td></td>
</tr>
<tr>
<td>\file</td>
<td>\flprn</td>
<td></td>
<td>File name</td>
<td></td>
</tr>
<tr>
<td>\kbd</td>
<td></td>
<td></td>
<td>Keyboard input</td>
<td></td>
</tr>
<tr>
<td>\key</td>
<td></td>
<td></td>
<td>Specifying keys</td>
<td></td>
</tr>
<tr>
<td></td>
<td>\mchprn</td>
<td></td>
<td>Machine name</td>
<td></td>
</tr>
<tr>
<td></td>
<td>\mprn</td>
<td></td>
<td>Proper name</td>
<td></td>
</tr>
<tr>
<td>\option</td>
<td></td>
<td></td>
<td>Option name</td>
<td></td>
</tr>
<tr>
<td>\samp</td>
<td>\smpprn</td>
<td></td>
<td>Literal character sequence</td>
<td></td>
</tr>
<tr>
<td>\url</td>
<td></td>
<td></td>
<td>World Wide Web location</td>
<td></td>
</tr>
<tr>
<td>\var</td>
<td></td>
<td></td>
<td>Metasyntactic variable</td>
<td></td>
</tr>
</tbody>
</table>

*Sources: \TeXInfo manual*
4.6.1 Inserting \TeX into \TeXInfo

\@tex
% Define \TeX macros to roughly correspond to \LaTeX style files
\def\dfr{d} % [frc] Math differential
@end tex

4.6.2 Texi2html

The texi2html command converts \TeXInfo-format manuals into HTML format. The sources are available from the CVS server

cvs -d :pserver:t2h-anon@urmel.mathematik.uni-kl.de:/usr/local/Singular/cvsroot login
cvs -d :pserver:t2h-anon@urmel.mathematik.uni-kl.de:/usr/local/Singular/cvsroot co Texi2html

with the password texi2html.

4.6.3 Texi2latex

The texi2latex command converts \TeXInfo-format manuals into \LaTeX format. The sources are available from the GNU project server http://www.nongnu.org/texi2latex. texi2latex requires an XSLT processor such as Saxon.

sudo apt-get install libsaxon-java
cd ${DATA}/tmp/texi2latex-0.9.4
export CXX=g++-3.4
make
sudo make install
texi2latex ~/nco/doc/nco.texi
# First, install saxon version 6.5.3
cd ${DATA}/tmp
mkdir saxon-6.5.3
cp saxon6_5_3.zip saxon-6.5.3
cd saxon-6.5.3
unzip saxon6_5_3.zip

4.6.4 Tth

The tth (\TeX-to-HTML) command converts \LaTeX-format documents into HTML format.

tth -a -Lltx -p${TEXINPUTS}:${BIBINPUTS} < ltx.tex > ltx.html

The -a switch tells tth to automatically run commands like latex, bibtex, etc., to generate any necessary auxiliary files. Tell tth the root word for the auxiliary files with the -L switch. tth searches for files on the path specified by the -p switch. Full documentation is available at file:///usr/share/doc/tth/tth_manual.html. According to the manual,
TTH does not recognize the `\usepackage` command by default because the \LaTeX macros that are input by this command almost always contain catcode changes or other usages incompatible with TTH. oTTH requires that personal packages use `\input` instead of `\usepackage`. This usually imposes non-generic, and thus unacceptable, constraints on the source \LaTeX document.

4.6.5 Tex4ht

tex4ht is both a package and a program that converts \LaTeX-format documents into HTML. It is best to invoke the tex4ht suite of programs using the htlatex script.

htlatex ltx.tex

This produces HTML files of the form ltx.css, ltx[0-9].html, ltx.xref, ltx.lg, ltx.idv, ltx.4ct, ltx.tc,

If interested in displaying pages with mozilla, in particular, use the mzlatex script:

mzlatex ltx.tex

This produces XML files of the form ltx[0-9].xml.

4.7 HTML/SGML

Hypertext Markup Language (HTML) is used to encode documents displayed by most Web browsers. Table 23 summarizes the most common ways to implement of special characters in HTML, and their \LaTeX equivalents.
Table 4: HTML/SGML Special Characters

<table>
<thead>
<tr>
<th>Mnemonic HTML</th>
<th>Numeric HTML</th>
<th>\LaTeX</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;foo@bar&amp;gt;</td>
<td>&lt;foo@bar&amp;#62;</td>
<td>$&lt;$foo@bar$&gt;$</td>
<td><a href="mailto:foo@bar">foo@bar</a></td>
</tr>
<tr>
<td>è</td>
<td>è</td>
<td>'{e}</td>
<td>è</td>
</tr>
<tr>
<td>é</td>
<td>é</td>
<td>'{e}</td>
<td>é</td>
</tr>
<tr>
<td>ý</td>
<td>ý</td>
<td>'{y}</td>
<td>ý</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td>non-breakable space</td>
<td>non-breakable space</td>
</tr>
<tr>
<td>C. S.Zender</td>
<td>C. S.Zender</td>
<td>C.\textit{S. Zender}</td>
<td>C. S. Zender</td>
</tr>
<tr>
<td>Α</td>
<td>Α</td>
<td>$\Alpha$</td>
<td>α (Greek capital letter alpha)</td>
</tr>
<tr>
<td>α</td>
<td>α</td>
<td>$\alpha$</td>
<td>α (Greek small letter alpha)</td>
</tr>
<tr>
<td>−</td>
<td>−</td>
<td>$-$</td>
<td>− (Minus sign)</td>
</tr>
<tr>
<td>×</td>
<td>×</td>
<td>$\times$</td>
<td>× (Multiplication sign)</td>
</tr>
<tr>
<td>÷</td>
<td>÷</td>
<td>$/$</td>
<td>/ (Division sign)</td>
</tr>
<tr>
<td>±</td>
<td>±</td>
<td>$\pm$</td>
<td>± (Plus-minus sign)</td>
</tr>
<tr>
<td>∂</td>
<td>∂</td>
<td>$\partial$</td>
<td>∂ (Partial differential)</td>
</tr>
<tr>
<td>µ</td>
<td>µ</td>
<td>$\mu$</td>
<td>µ (Micro sign)</td>
</tr>
<tr>
<td>€</td>
<td>€</td>
<td>\texteuro</td>
<td>€ (Euro sign)</td>
</tr>
<tr>
<td>©</td>
<td>©</td>
<td>\copyright</td>
<td>©</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td>foo;bar</td>
<td>foo bar (em space)</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td>foo;bar</td>
<td>foo bar (en space)</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td>foo,bar</td>
<td>foo bar (thin space)</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>---</td>
<td>— (em dash)</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>--</td>
<td>– (en dash)</td>
</tr>
<tr>
<td>‘</td>
<td>‘</td>
<td>‘foo’</td>
<td>‘foo’ (Left single quotation mark)</td>
</tr>
<tr>
<td>’</td>
<td>’</td>
<td>’foo’</td>
<td>’foo’ (Right single quotation mark)</td>
</tr>
<tr>
<td>“</td>
<td>“</td>
<td>‘foo‘</td>
<td>“foo“ (Left double quotation mark)</td>
</tr>
</tbody>
</table>
Table 4: (continued)

<table>
<thead>
<tr>
<th>Mnemonic HTML</th>
<th>Numeric HTML</th>
<th>\LaTeX{}</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>”</td>
<td>’</td>
<td>‘’foo’’</td>
<td>&quot;foo&quot; (right double quotation mark)</td>
</tr>
<tr>
<td>…</td>
<td>�</td>
<td>\hellip{}</td>
<td>\ldots (low horizontal ellipsis)</td>
</tr>
<tr>
<td>↔</td>
<td>↎</td>
<td>\leftarrow</td>
<td>← (horizontal left-right arrow)</td>
</tr>
<tr>
<td>←</td>
<td>←</td>
<td>\leftarrow</td>
<td>← (left arrow)</td>
</tr>
<tr>
<td>→</td>
<td>→</td>
<td>\rightarrow</td>
<td>→ (right arrow)</td>
</tr>
</tbody>
</table>
4.8 Indexing

Here we show some typical \LaTeX indexing and cross-indexing which make use of the \texttt{\index} command and derivations thereof.

1. The following instance of the word “quark” is indexed using \texttt{\trmdfn{quark}}: \textit{quark}. When processed with the \texttt{\usepackage[hyperindex]{hyperref}} package, the index should point back to this instance (as long as \texttt{backref=true}).

2. The following instance of the word “quark” is indexed using \texttt{\trmidx{quark}}: quark.

   (a) The following index of the author “Homer Simpson” uses \texttt{\trmdfn[Simpson, Homer]{Homer Simpson}} so that “Homer Simpson” appears verbatim in the text but is indexed by the optional argument “Simpson, Homer”: \textit{Homer Simpson}. Compare this to \texttt{\trmidx[Simpson, Homer]{Homer Simpson}}: Homer Simpson and to \texttt{\trmidx{Homer Simpson}}: Homer Simpson.

3. Related concepts may be cross-indexed and sub-sorted as well. For example \texttt{\index{Frodo|see{Baggins}}} places ’Frodo, see Baggins’ in the index. Nesting related item is accomplished by, e.g., \texttt{\index{Baggins!Frodo}}, \texttt{\index{Baggins!Bilbo}}, \texttt{\index{Baggins!Bilbo!adventures}}, \texttt{\index{Baggins!Bilbo!rings}}.

4. The index requires some help to determine where to place non-standard symbols. For example, \texttt{METAFONT} should be indexed alphabetically as “Metafont”, not as “Metafont”, while \texttt{MF} should be indexed alphabetically as “MF”. This is accomplished by the command \texttt{\index{Metafont\@MF}}. The argument before the \@ is the lexicographical value of the entry used for alphabetization, and the argument after the \@ is the value actually written to the index. By the same token, the command \texttt{\index{index\@\verb+\index+}} places the word \texttt{\index} under the letter “i”. Note that this method is tedious and prone to error since it involves typing the word “index” three times. Heiko Oberdiek has provided me with the command, \texttt{\cmdltxidx} which prints \texttt{\cmdltxidx} in the text and in the index at the correct alphabetical location.

4.9 Line Numbering

To number each line in a document, use the package \texttt{lineno.sty}. The \texttt{\linenumbers} command turns on line-numbering, and the \texttt{\nolinenumbers} turns it off. To demonstrate, the next few sections have line-numbering turned on. The package is very flexible and supports options like \texttt{\pagewiselinenumbering}, \texttt{\rightlinenumbers}, etc. \texttt{lineno.sty} even supports labeling lines and referring to specific lines with the standard reference commands, e.g., \texttt{\ref}.

Unfortunately, line-numbering is expensive in terms of processing time and contents of the auxiliary file, so expect \LaTeX to slow down when large amounts of material are numbered.

When printing source code, it may be desirable to nicely format certain keywords in the language. The \LaTeX command \texttt{\cxx} prints “C++” instead of the unformatted “\verb+C+++”.
4.10 Vertical Spacing

To change the vertical spacing in a document, use the package \texttt{setspace.sty}.

4.11 Horizontal Spacing

Spacing between numbers and dimensions is a complicated issue. The issue is most often ignored by novices, and, for those who care, there are no universal solutions. A related question is the spacing between multiple physical dimensions in a single unit, so-called \textit{interdimensional spacing}. The \textit{J. Fluid. Mech.} convention appears to be a \textbackslash; space between the value and dimension, and then a \textbackslash, space for interdimensional spacing, e.g., \texttt{5\;cm\,s^{-1}} produces 5 cm s\(^{-1}\). AGU journals appear to use \textbackslash, in both positions, e.g., \texttt{5\,cm\,s^{-1}} produces 5 cm s\(^{-1}\).

4.12 Verbatim

The package \texttt{listings.sty} contains extensive options to nicely format input code. First one must define the current language environment with the \texttt{\lstset} command, e.g.,

\begin{verbatim}
\lstset{ % Set up listings.sty environment
  language=[LaTeX]TeX, % Language for listings.sty
  stringstyle=\ttfamily, %
  keywordstyle=\ttfamily}
\end{verbatim}

Once \texttt{\lstset} has been initialized, the \texttt{\lstinline} command is used to format code inline, and the \texttt{lstlisting} environment is available to place longer code fragments in display style. The \texttt{srcltx} package enables \texttt{xdvi} to display \LaTeX\ code synchronized with the display: Also consider the \texttt{fancyvrb.sty} package by Timothy van Zandt.

4.13 CVS

Using CVS in \LaTeX\ documents is not straightforward. Norman Gray recommended the following on \texttt{comp.text.tex}

\begin{verbatim}
\def\CVS$#1: #2 ${\expandafter\def\csname CVS#1\endcsname{#2}}
\CVS$Revision$
\CVS$Date$
\end{verbatim}

and use it like \texttt{\date{\ CVSDate, version \ CVSRevision}}. This recipe only works when CVS versioning is turned on, i.e., when the \texttt{-kk} option is not specified. The above definition must appear in the document being tracked, i.e., the \texttt{.tex} file, rather than a style file. Otherwise the version information will reflect the evolution of the style file and not the document being tracked. Unfortunately this contributes to preamble bloat.

4.14 Watermarks

Printing a message on each page is useful to watermark draft work, so it is a FAQ. To do this in \LaTeX, use the \texttt{draftcopy} package by Juergen Vollmer. The word “DRAFT”
Table 5: \TeX Family Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Command</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>\TeX</td>
<td>\TeX</td>
<td>none</td>
</tr>
<tr>
<td>\TeXInfo</td>
<td>\TeX{}Info, \TeXInfo</td>
<td>csz</td>
</tr>
<tr>
<td>\LaTeX</td>
<td>\LaTeX, \LaTeX</td>
<td>none, texnames</td>
</tr>
<tr>
<td>\LaTeXe</td>
<td>\LaTeXe</td>
<td>none</td>
</tr>
<tr>
<td>METAFONT</td>
<td>\MF</td>
<td>mflogo</td>
</tr>
<tr>
<td>METAFONT</td>
<td>\METAFONT</td>
<td>texnames</td>
</tr>
<tr>
<td>AMSTeX</td>
<td>AMSTEX, AMSTeX, AMSTeX</td>
<td>texnames</td>
</tr>
<tr>
<td>BibTeX</td>
<td>BIBTEX, BIBTeX, BibTeX</td>
<td>texnames</td>
</tr>
</tbody>
</table>

Sources: Kopka and Daly (1999, 2004)

(assuming an English document) will be blazed across the specified pages. ghostview has troubles showing DRAFT watermark in the on-screen window. Ghostscript (gs) works fine with watermarks.

Watermarking PDF\TeX-generated files requires a more sophisticated package called eso-pic which is contained in Martin Schroeder’s ms bundle. For PDF, try the following:

\usepackage[pdftex]{graphics,color} %
\usepackage{eso-pic} % Required for Draft (\AddToShipoutPicture)
\AddToShipoutPicture{% \setlength{\pdfpagewidth}{0.9\textwidth}\setlength{\pdfpageheight}{0.9\textwidth}\hspace{5mm}\textsc{Sample Paper}}

4.15 Symbols

The variety of symbols \LaTeX can produce is astounding. The definitive source of these symbols is the Symbols document by M. Scott Pakin, available from ftp://cam.ctan.org/tex-archive/info/symbols/comprehensive/. Some of the more frequently used \TeX-related symbols are listed in Table 5. The \usepackage{texnames} makes the proper logos available, but, according to Robin Fairbairns, it is an out-of-date, poorly coded package which should be avoided if possible (i.e., use mflogo instead for METAFONT). According to the UK \TeX FAQ, “For those who don’t wish to acquire the ’proper’ logos, the canonical thing to do is to say AMSTeX for AMSTeX, Pic\TeX for Pic\TeX, Bib\TeX for Bib\TeX, and so on.” Extending this advice to More recent packages have their own styles. A few of the more useful are \texttt{pdf}\TeX for PDF\TeX, and \texttt{pdf}\LaTeX for PDF\LaTeX.

Often a font is named after its creator, whether a person or a company. Thus learning the names of font creators is a good mnemonic for the package names. The marvosym fonts are named for “Martin Vogel’s Symbols”.
4.16 Graphics

Inclusion of graphics images is controlled by the graphix package. The \texttt{\includegraphics} macro imports Postscript (\texttt{*.ps}) and encapsulated Postscript (\texttt{*.eps}) files automatically.

Normally graphics \textit{float} in documents, i.e., their position varies so as to flow well with the surrounding text. These floats are usually placed within the \texttt{figure} environment, so that a caption may be easily added. With sizing and caption, the skeleton code to include a graphical figure looks like

\begin{verbatim}
\begin{figure*}
\centering
\includegraphics[width=0.5\hsize]{SWCF_x_01}\vfill
\includegraphics[width=0.5\hsize]{SWCF_x_07}\
\caption{Shortwave Cloud Forcing}{SWCF for (a) January and (b) July.}
\label{fgr:SWCF_x1}
\end{figure*}
\end{verbatim}

Similar commands produced Figure ???. The \texttt{figure} environment only spans a single text column. The \texttt{figure*} environment spans all columns in a multi-column document. The location of the float is an optional argument to the \texttt{figure} environment, e.g., \texttt{\begin{figure*}[b]} to place the float at the bottom of the current or the next page.

It is not straightforward to import other graphics types. Raster graphics such as \texttt{GIF} and \texttt{JPEG} must first be converted to Postscript. \LaTeX{} will do this automatically if it knows the conversion rules. This may be accomplished with the \texttt{\DeclareGraphicsRule} command.
The prerequisite is that a shell-executable exist which can produce Postscript. The command \texttt{gif2eps} used to exist and could handle GIF images. Here is how a GIF figure might be indicated

\begin{verbatim}
\DeclareGraphicsRule{.gif}{eps}{}{'gif2eps #1 -} % Convert GIF files to eps
\begin{figure*}
\centering
\includegraphics[width=0.5in,height=0.5in]{/data/zender/fgr/dmr/r2d2.gif}
\caption[R2D2]{R2D2.\label{fgr:r2d2}}
\end{figure*}
\end{verbatim}

These commands produced Figure 2. Note the use of the \texttt{width} and \texttt{height} options to size the figure. If only one dimension were given, then \texttt{graphicx} would automatically maintain the natural aspect ratio of the figure.

4.16.1 Clipping and Rotation

To trim images, use the \texttt{trim} and \texttt{clip} options to \texttt{includegraphics}. Specify the viewport margins in the order Left, Bottom, Right, Top. “Liberty” is a good mnemonic for the \texttt{lbrt} ordering.

\begin{verbatim}
\includegraphics[width=1.0\hsize,clip=true,trim=0.75in 4.1in 0.1in 4.9in]{/data/zender/fgr/ess_atm/ppr_Rud05_fgr1}
\end{verbatim}

4.17 Trademarks

Identifying intellectual property correctly requires some knowledge of copyrights and trademarks. What distinguishes a trademark from a registered trademark or a service mark is not clear. \LaTeX{} automatically makes available the symbols \texttt{\copyright}, \texttt{\texttrademark}, and \texttt{\textregistered} to denote these marks \cite{Kopka:1999}. For example, this work is Copyright © 2000–2003 by me. \texttt{Linux\textregistered} produces Linux\textregistered. \texttt{Linux\texttrademark} produces Linux™ (where the superscript is automatic). However, the text companion package \texttt{textcomp} provides nicer versions of \texttt{\texttrademark} and \texttt{\textregistered} than the defaults, so remember to load it for important documents. \texttt{textcomp} also provides some symbols that are unique, such as \texttt{\textservicemark} (e.g., Linux^{SM}), \texttt{\textonehalf} (\(\frac{1}{2}\)), \texttt{\textonequarter} (\(\frac{1}{4}\)), and \texttt{\textthreequarters} (\(\frac{3}{4}\)).

4.18 Currencies

The euro, the official currency of the European Union, may be typeset with \texttt{\texteuro} (€). Other currency symbols include...
4.19 Acronyms and Abbreviation

Abbreviations are contractions of phrases into a sequence of letters each usually representing the first letter of a word. Abbreviations are not intended to be pronounced as a single word. For example, USA is an abbreviation. Acronyms are abbreviations which are pronounceable without spelling the abbreviation letter-by-letter. Thus IBM is not an acronym, but NATO is.

Typographical conventions set acronyms in a “smallcaps” font, i.e., a font where capital letters are smaller than the regular text font. In TeX, smallcaps is one of the font shapes §4.1. Periodicals which follow this convention include The Economist. Thus acronyms may be correctly typeset “on the fly” using the \textsc macro. For example, \textsc\{nco\} produces nco, while \textsc\{unix\} produces UNIX. There is also a homebrew macro, \acr, which is currently just a wrapper for \textsc. For example, \acr\{nco\} produces nco.

After raising the question “When to use smallcaps for acronyms?” on the comp.text.tex USENET list, a variety of answers and rationales were proposed. Robin Fairbairns noted that Barbara Beeton specified a not-quite-small caps variant for use in Tugboat. His code for that is

\begin{verbatim}
\usepackage{relsize}
def\acro#1\{\textsmaller{#1}\@\}
\acro{TUG} conferences aren’t much like \acro{SOSP}s.
\end{verbatim}

Others simply use a small text font

\begin{verbatim}
\newcommand{\cap}[1]{\{\small{#1}\}}
\newcommand{\capRB}[1]{\raisebox{1pt}{\small{(}}\small{#1}\raisebox{1pt}{\small{)}}}
\TeX\ User Group \capRB{TUG} conferences aren’t much like \cap{SOSP}s.
\end{verbatim}

4.20 Text Samples

Here we try some typical \LaTeX text formatting.

1. Here we use the custom \texttt{\dgr} (degree) macro, first in text mode, then in math mode. \texttt{\dgr} uses \texttt{\ensuremath} so there should be no discernible difference: 10\dgr S--10\dgr N gives “10°S–10°N”. 10\$\dgr$S--10\$\dgr$N gives “10°S–10°N”.

2. \texttt{\includegraphics} will automatically scale a graphic to fit within a given box while maintaining aspect ratio with this argument \texttt{width=xxx,height=yyy,keepaspectratio}

Two commands useful for typesetting URLs and e-mail addresses are \texttt{\url} and \texttt{\href}. Table 6 show the results of various typesetting techniques on URLs, including problematic long URLs.
Table 6: Typesetting Text

<table>
<thead>
<tr>
<th>\LaTeX Command</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>\url{nco.sourceforge.net}</td>
<td>nco.sourceforge.net</td>
</tr>
<tr>
<td>\href{<a href="http://nco.sourceforge.net%7D%7BNCO">http://nco.sourceforge.net}{NCO</a> Homepage}</td>
<td>NCO Homepage</td>
</tr>
<tr>
<td>\url{<a href="mailto:zender@uci.edu">zender@uci.edu</a>}</td>
<td><a href="mailto:zender@uci.edu">zender@uci.edu</a></td>
</tr>
<tr>
<td>\url{<a href="http://some/really/long/URL/that/wants/to/wrap%7D">http://some/really/long/URL/that/wants/to/wrap}</a></td>
<td><a href="http://some/really/long/URL/that/wants/to/wrap">http://some/really/long/URL/that/wants/to/wrap</a></td>
</tr>
<tr>
<td>\href{<a href="http://some/really/long/URL/that/wants/to/wrap%7D%7BShort">http://some/really/long/URL/that/wants/to/wrap}{Short</a> Name}</td>
<td>Short Name</td>
</tr>
</tbody>
</table>

Unfortunately, the \texttt{dvips} driver is unable to automatically break URLs across lines. On the other hand, \texttt{pdflatex} intelligently breaks URLs whenever necessary. A \texttt{comp.text.tex} thread initiated on Oct. 24, 2001 by Olive Moeller discusses the reasons for this. Thus, as demonstrated in Table 6, documents may be formatted differently depending on whether they are produced with \texttt{dvips} or \texttt{pdflatex}.

5 Text Typography

5.1 Gothic

Gothic fonts occupy a special place in the history of typography since they appear in the oldest typeset texts in Western civilization. Yannis Haralambous used \texttt{METAFONT} to design four interesting Old German fonts. The Gothic letter initiating this paragraph is from the “Yannis initial” font called \texttt{yinit}. As mentioned above, the initial letter of paragraphs is “dropped” with the \texttt{dropcaps} package, in this case \texttt{\bigdrop{0pt}{3}{yinit}{G}othic}...

Unfortunately, accessing non-default fonts in \LaTeX generally involves manipulating a very detailed and complex specification scheme, \texttt{NFSS} (§4.1).

- Yannis Fraktur: \texttt{\usefont{U}{yfrak}{m}{n} Hello, World.}
- Yannis Gothic: \texttt{\usefont{U}{ygoth}{m}{n} Heo, World.}
- Yannis Schwabacher: \texttt{\usefont{U}{yswab}{m}{n} \textit{Hello, World.}}
- Yannis Initial: \texttt{\usefont{U}{yinit}{m}{n} HW}

5.2 Text Fonts

Table 7 shows different series and styles of the default text font.
Table 7: Text Series and Styles

<table>
<thead>
<tr>
<th>\LaTeX Font</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textrm</td>
<td>ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefgijklmnopqrstuvwxyz0123456789</td>
</tr>
<tr>
<td>\textsf</td>
<td>ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefgijklmnopqrstuvwxyz0123456789</td>
</tr>
<tr>
<td>\texttt</td>
<td>ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefgijklmnopqrstuvwxyz0123456789</td>
</tr>
<tr>
<td>\textup</td>
<td>ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefgijklmnopqrstuvwxyz0123456789</td>
</tr>
<tr>
<td>\textit</td>
<td>ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefgijklmnopqrstuvwxyz0123456789</td>
</tr>
<tr>
<td>\textsl</td>
<td>ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefgijklmnopqrstuvwxyz0123456789</td>
</tr>
<tr>
<td>\textsc</td>
<td>ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefgijklmnopqrstuvwxyz0123456789</td>
</tr>
<tr>
<td>\textmd</td>
<td>ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefgijklmnopqrstuvwxyz0123456789</td>
</tr>
<tr>
<td>\textbf</td>
<td>ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefgijklmnopqrstuvwxyz0123456789</td>
</tr>
<tr>
<td>\tiny</td>
<td>ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefgijklmnopqrstuvwxyz0123456789</td>
</tr>
<tr>
<td>\scriptsize</td>
<td>ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefgijklmnopqrstuvwxyz0123456789</td>
</tr>
<tr>
<td>\footnotesize</td>
<td>ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefgijklmnopqrstuvwxyz0123456789</td>
</tr>
<tr>
<td>\small</td>
<td>ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefgijklmnopqrstuvwxyz0123456789</td>
</tr>
<tr>
<td>\normalsize</td>
<td>ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefgijklmnopqrstuvwxyz0123456789</td>
</tr>
<tr>
<td>\large</td>
<td>ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefgijklmnopqrstuvwxyz0123456789</td>
</tr>
<tr>
<td>\Large</td>
<td>ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefgijklmnopqrstuvwxyz0123456789</td>
</tr>
<tr>
<td>\LARGE</td>
<td>ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefgijklmnopqrstuvwxyz0123456789</td>
</tr>
<tr>
<td>\huge</td>
<td>ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefgijklmnopqrstuvwxyz0123456789</td>
</tr>
<tr>
<td>\Huge</td>
<td>ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefgijklmnopqrstuvwxyz0123456789</td>
</tr>
</tbody>
</table>

Table 8 shows different families of text fonts.

Table 8: \textbf{Text Fonts}^4

<table>
<thead>
<tr>
<th>\LaTeX Font</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textgoth</td>
<td>ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefgijklmnopqrstuvwxyz0123456789</td>
</tr>
<tr>
<td>\textfrak</td>
<td>ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefgijklmnopqrstuvwxyz0123456789</td>
</tr>
<tr>
<td>\textswab</td>
<td>ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefgijklmnopqrstuvwxyz0123456789</td>
</tr>
</tbody>
</table>
6 Math Typography

6.1 Math Conventions

The ISO has established conventions regarding symbols appearing in mathematical documents (Kopka and Daly, 1999, p. 142). The most often violated convention, which is also easy avoided with \LaTeX, concerns the use of upright fonts for symbols denoting fixed, constant values. So, for example, the base of the natural logarithm should be denoted \( e \) rather than simply \textit{e}. This is accomplished by using $\me$ rather than \$e\$. Likewise the imaginary number is \( i \) (\texttt{\textbackslash mi}) rather than \( i \) (\texttt{\textbackslash i}); pi is \( \pi \) (\texttt{\textbackslash mpi}) rather than \( \pi \) (\texttt{\textbackslash pi}), and the symbol for a differential element is, e.g., \( dx \) (\texttt{\textbackslash dfr \textbackslash x}) rather than \( dx \) (\texttt{\textbackslash dx}). Uppercase upright Greek symbols may be obtained from the \texttt{symbols} font or from the \texttt{txfonts} package. \texttt{\mathbf} is a bold upright mathematical font, and contains only Latin and uppercase Greek letters. The package \texttt{upgreek.sty} supplies upright Greek letters when the normal letter command is prefixed with “up”, e.g., \texttt{\textbackslash uppi} produces \( \pi \) whereas \texttt{\textbackslash pi} produces \( \pi \). Unfortunately, the letters produced by \texttt{upgreek.sty} appear to be boldface. The package \texttt{bm.sty} boldfaces Greek letters (as does the \texttt{\pmb} or “Poor man’s bold” from \texttt{amsbsy.sty}). The packages \texttt{mathptmx.sty} and \texttt{mathpazo.sty} create full, bold-italic, alphabets in the Times and Palatino fonts, respectively. Whether this convention applies to Greek numerical prefixes is unclear. For example, a micron, \( 10^{-6} \) m, is often written “\( \mu \)m” (\texttt{\textbackslash \mu\textbackslash m}). The \( \mu \) in \( \mu \)m, however, has a fixed value (\( 10^{-6} \)). It is, in essence, a universal constant much like \( \pi \). Therefore microns should be written with an upright \( \mu \), i.e., \( \mu \)m. Most journals, including AGU journals, adhere to this format.

According to Kopka and Daly (1999), p. 142:

1. Simple variables are represented by italic letters, \textit{abcxyz}.
2. Vectors are written in bold face italic, as \textbf{Buω}.
3. Tensors of 2nd order and matrices may appear in a sans serif font, as MDI
4. The special numbers \( e \), \( i \), \( \pi \), as well as the differential operator \( d \), are to be written in an upright font to emphasize that they are not variables.
5. A measurement consisting of a number plus a dimension is an indivisible unit, with a smaller than normal space between them, as 5.3 km and 62 µm. The dimension is set in an upright font.

\textit{Kopka and Daly (1999)} recommend using \texttt{fxm}.

6.2 Math Equations

Lengthy derivations may require breaking the derivation across a page boundary. It is generally considered smarter to diallow page breaks between equation lines by default, and to require the author to specifically enable them where necessary. Thus normal display environments, e.g., the \texttt{eqnarray} environment, do not, by default, allow breaking across pages. The \texttt{displaybreak} command causes a break in a particular equation on a particular page. The optimal position for the \texttt{displaybreak} is just before the \texttt{\} where it should take effect. \texttt{displaybreak} takes an optional integer argument valued 0 to 4 to indicate the
degree of penalty associated with breaking a display environment, with 0 merely allowing a break to take place, and 4 requiring that the page break, e.g., `\displaybreak[4]`.

\[ A M S - T e X \] also supplies the `allowdisplaybreaks` macro which changes the default to permit displayed equations to flow smoothly from one page to the next. This macro should be placed in the document preamble. `allowdisplaybreaks` takes an optional integer argument valued 1 to 4 to indicate the degree of penalty associated with breaking a display environment, with 4 being the most permissive, e.g., `allowdisplaybreaks[4]`.

### 6.3 Math Fonts

Table 9 shows the different mathematical fonts. The `\mathscr` command is defined by multiple packages. When `\usepackage{mathscr}`{eucal} is employed, `\mathscr` prints a vertical script font, but when `\usepackage{mathrsfs}` is in effect `\mathscr` prints an ornate and very curvy script font reminiscent of wedding invitations.

<table>
<thead>
<tr>
<th>\LaTeX Command</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greek</td>
<td>ΓΔΘΞΣΤΥΦΨΩαβγδεζηθικλμνξοπρστυφχψω</td>
</tr>
<tr>
<td>\bm</td>
<td>ΓΔΘΞΣΤΥΦΨΩαβγδεζηθικλμνξοπρστυφχψω</td>
</tr>
<tr>
<td>upgreek.sty</td>
<td>ΓΔΘΞΣΤΥΦΨΩαβγδεζηθικλμνξοπρστυφχψω</td>
</tr>
<tr>
<td>\mathnormal</td>
<td>ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789</td>
</tr>
<tr>
<td>\mathrm</td>
<td>ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789</td>
</tr>
<tr>
<td>\mathsf</td>
<td>ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789</td>
</tr>
<tr>
<td>\mathtt</td>
<td>ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789</td>
</tr>
<tr>
<td>\mathit</td>
<td>ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789</td>
</tr>
<tr>
<td>\mathbf</td>
<td>ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789</td>
</tr>
<tr>
<td>\mathcal</td>
<td>ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789</td>
</tr>
<tr>
<td>\mathbb</td>
<td>ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789</td>
</tr>
<tr>
<td>\mathfrak</td>
<td>ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789</td>
</tr>
<tr>
<td>\pmb</td>
<td>ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789</td>
</tr>
</tbody>
</table>

### 6.4 Math Samples

\LaTeX contains many useful, but hard-to-remember, commands and symbols for formatting mathematics. It is easy to forget when to use uncommon symbols like `\lesssim`, `\gtrapprox`, and \,. Table 10 shows results of different mathematical typesetting techniques.
Table 10: **Typesetting Math**

<table>
<thead>
<tr>
<th>LaTeX Command</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{\partial \rho}{\partial T}\Big</td>
<td>_V$</td>
</tr>
<tr>
<td>$\frac{\partial \rho}{\partial T}\Bigg</td>
<td>_V$</td>
</tr>
<tr>
<td>$\tilde{D}_n^2$</td>
<td>$\tilde{D}_n^2$</td>
</tr>
<tr>
<td>$\bar{D}_n^2$</td>
<td>$\bar{D}_n^2$</td>
</tr>
<tr>
<td>$\hat{D}_n^2$</td>
<td>$\hat{D}_n^2$</td>
</tr>
<tr>
<td>$\overline{D}_n^2$</td>
<td>$\overline{D}_n^2$</td>
</tr>
<tr>
<td>$\underline{D}_n^2$</td>
<td>$\underline{D}_n^2$</td>
</tr>
<tr>
<td>$\dot{D}_n^2$</td>
<td>$\dot{D}_n^2$</td>
</tr>
</tbody>
</table>

10\`$ \times$ 10\`$°$
Table 10: (continued)

<table>
<thead>
<tr>
<th>\textLaTeX Command</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>\dot{\dmt_{\nbrsbs}}^2</td>
<td>\dot{D}_n^2</td>
</tr>
<tr>
<td>\ddot{\dmt_{\nbrsbs}}</td>
<td>\ddot{D}_n</td>
</tr>
<tr>
<td>\dddot{\dmt_{\nbrsbs}}</td>
<td>\dddot{D}_n</td>
</tr>
<tr>
<td>\dddot{\dmt_{\nbrsbs}}^2</td>
<td>\dddot{D}_n^2</td>
</tr>
<tr>
<td>\vec{\dmt_{\nbrsbs}}</td>
<td>\vec{D}_n</td>
</tr>
<tr>
<td>\vec{\dmt_{\nbrsbs}}^2</td>
<td>\vec{D}_n^2</td>
</tr>
<tr>
<td>\imath</td>
<td>i</td>
</tr>
<tr>
<td>\vec{\imath}</td>
<td>\vec{i}</td>
</tr>
<tr>
<td>\hat{\imath}</td>
<td>\hat{i}</td>
</tr>
<tr>
<td>\mathbf{\hat{i}}</td>
<td>\mathbf{\hat{i}}</td>
</tr>
<tr>
<td>\mathbf{\vec{i}}</td>
<td>\mathbf{\vec{i}}</td>
</tr>
<tr>
<td>\jmath</td>
<td>j</td>
</tr>
<tr>
<td>\vec{\jmath}</td>
<td>\vec{j}</td>
</tr>
<tr>
<td>\hat{\jmath}</td>
<td>\hat{j}</td>
</tr>
<tr>
<td>\mathbf{\hat{j}}</td>
<td>\mathbf{\hat{j}}</td>
</tr>
<tr>
<td>\mathbf{\vec{j}}</td>
<td>\mathbf{\vec{j}}</td>
</tr>
<tr>
<td>\int_{0}^{\infty} ! ! ! n_r , dr</td>
<td>\int_{0}^{\infty} ! ! ! n_r , dr</td>
</tr>
<tr>
<td>\dstfnc_{\nbrsbs}(\dmt)</td>
<td>n_n(D)</td>
</tr>
<tr>
<td>\dstfnc^0_{\nbrsbs}(\dmt)</td>
<td>n_n^0(D)</td>
</tr>
<tr>
<td>\LaTeX Command</td>
<td>Result</td>
</tr>
<tr>
<td>----------------</td>
<td>--------</td>
</tr>
<tr>
<td>\dstfnc^{o}_{\nbrsbs}(D)</td>
<td>n_n^{e}(D)</td>
</tr>
<tr>
<td>\dstfnc^{e}_{\nbrsbs}(D)</td>
<td>n_n^{e}(D)</td>
</tr>
<tr>
<td>\tilde{\gsd}^{2}</td>
<td>\tilde{\sigma}_{g}^{2}</td>
</tr>
<tr>
<td>\tilde{\gsd^{2}}</td>
<td>\tilde{\sigma}_{g}^{2}</td>
</tr>
<tr>
<td>\dmtnaa</td>
<td>D_n</td>
</tr>
<tr>
<td>\dmtnar</td>
<td>\bar{D}_n</td>
</tr>
<tr>
<td>\dmtnma</td>
<td>\tilde{D}_n</td>
</tr>
<tr>
<td>\dmtnmr</td>
<td>\bar{D}_n</td>
</tr>
<tr>
<td>\dmtnwa</td>
<td>D_n</td>
</tr>
<tr>
<td>\dmtnwr</td>
<td>D_n</td>
</tr>
<tr>
<td>\frac{1}{2} \frac{1}{3}</td>
<td>\frac{1}{2} \frac{1}{3}</td>
</tr>
<tr>
<td>\frac{1}{2} \frac{2}{3}</td>
<td>\frac{1}{2} \frac{2}{3}</td>
</tr>
<tr>
<td>\frac{1}{2} \frac{3}{3}</td>
<td>\frac{1}{2} \frac{3}{3}</td>
</tr>
<tr>
<td>\frac{1}{2} \frac{1}{3}</td>
<td>\frac{1}{2} \frac{1}{3}</td>
</tr>
<tr>
<td>x^{1/2}</td>
<td>x^{1/2}</td>
</tr>
<tr>
<td>a \lessim b</td>
<td>a \lessim b</td>
</tr>
<tr>
<td>a \lessapprox b</td>
<td>a \lessapprox b</td>
</tr>
<tr>
<td>a \cong b</td>
<td>a \cong b</td>
</tr>
<tr>
<td>a \approxeq b</td>
<td>a \approxeq b</td>
</tr>
<tr>
<td>a \gtrsim b</td>
<td>a \gtrsim b</td>
</tr>
</tbody>
</table>
Table 10: (continued)

<table>
<thead>
<tr>
<th>\LaTeX Command</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>a \gtrapprox b</td>
<td>a \gtrapprox b</td>
</tr>
<tr>
<td>\pi \Pi \prod \Sigma \sum \mp \mathbf{\pi \Pi} \uppi \mbox{\boldmath$\pi \uppi \Pi$} \pmb{\pi}</td>
<td>\pi \Pi \prod \Sigma \sum \mp \mathbf{\pi \Pi} \uppi \mbox{\boldmath$\pi \uppi \Pi$} \pmb{\pi}</td>
</tr>
<tr>
<td>\nabla \times \cccbld \nabla \cross \cccbld \nabla_{\iii\iii} \nabla_{\iiii}</td>
<td>\nabla \times \cccbld \nabla \cross \cccbld \nabla_{\iii\iii} \nabla_{\iiii}</td>
</tr>
</tbody>
</table>

Bibliography


Kopka, H., and P. W. Daly (1999), \textit{A Guide to \LaTeX2e}, third ed., Addison-Wesley, Reading, MA. \textit{a, a, 4.1.2, a, 4.17, 6.1, 6.1}

Kopka, H., and P. W. Daly (2004), \textit{A Guide to \LaTeX2e}, Tools and Techniques for Computer Typesetting, fourth ed., Addison-Wesley, Boston, MA. \textit{a, a, a}

Index

\, 18
\.; 18
AutoRotatePages, 3
ColorConversionStrategy, 3
DVI, 3
EPS, 4
EmbedAllFonts, 3
PPower4, 7
\, 26
\gtrapprox, 26
\href, 6, 22
\lesssim, 26
\url, 22
a2ps, 3
acroread, 5, 7
clip, 21
cmp.t\text.t\ex.t, 23
detex, 5
dvips, 3, 4, 23
epsf\text, 4
eopsis\text, 4
epostop\text, 8
file://, 6
ghostscript, 5
ghostview, 5
gs, 4
htl\text{t}\text{a}\text{x}\text{i}, 14
http://, 6
lst\text{l}\text{t}\text{is}\text{t}\text{i}\text{ng}, 18
mozilla, 14
mp\text{a}\text{g}\text{e}, 3
mzlatex, 14
pdfl\text{a}\text{t}\text{e}\text{x}, 4, 23
pdft\text{e}\text{x}, 3
pd\text{f}\text{thumb}, 7
pdftk, 7
pd\text{f\text{t}}\text{to}\text{t}\text{e}\text{x}, 5
ps2epsi, 4
ps2pdf, 3
ps\text{r}\text{es}\text{i}\text{z}, 4
te\text{T}\text{e}\text{X}, 3
tex4ht, 14
texi2html, 13
texi2latex, 13
trim, 21
tth, 13
untex, 5
up\text{dmap}, 3
xdvi, 3, 18
xp\text{d}f, 5, 6
\, 22
a0\text{p}\text{o}\text{t}\text{e}\text{r}, 4
amsb\text{s}\text{y}.\text{st}\text{y}, 25
bm.\text{st}\text{y}, 25
datet\text{i}\text{m}\text{e}.\text{st}\text{y}, 11
dro\text{p}\text{c}\text{a}\text{p}\text{s}.\text{st}\text{y}, 1
epostop\text{d}f.\text{st}\text{y}, 8
fancy\text{v}\text{r}\text{b}.\text{st}\text{y}, 18
foo.\text{pdf}, 6
lettr\text{i}\text{n}\text{e}.\text{st}\text{y}, 1
lineno, 17
listings, 18
mathpazo, 25
math\text{p}\text{t}\text{m}\text{x}.\text{st}\text{y}, 25
\text{p}\text{d}\text{f}\text{s}\text{c}\text{r}\text{e}\text{n}\text{e}.\text{st}\text{y}, 7
rotating, 8
setspace, 18
tex\text{m}\text{f}.\text{cn}\text{f}, 8
up\text{g}\text{reek}.\text{st}\text{y}, 25, 26
H\text{\'a}\text{n} \text{Th\'e} \text{Th\'anh}, 5
Prof. Dr. Hans Hagen, 5
\acr, 22
Adobe Distiller, 3
AGU, 18, 25
\allowdisplaybreaks, 26
\AMSTeX, 19
article format, 6
Baggins
Bilbo, 17
adventures, 17
rings, 17
Frodo, 17
\baselineskip, 10
\BibTeX, 19
<table>
<thead>
<tr>
<th>INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>\bigdrop, 1</td>
</tr>
<tr>
<td>\bm, 26</td>
</tr>
<tr>
<td>bounding box, 4</td>
</tr>
<tr>
<td>C++, 17</td>
</tr>
<tr>
<td>\cmdltxidx, 17</td>
</tr>
<tr>
<td>Con\TeX, 5</td>
</tr>
<tr>
<td>\copyright, 21</td>
</tr>
<tr>
<td>CVS, 13</td>
</tr>
<tr>
<td>\cxx, 17</td>
</tr>
<tr>
<td>dates, 11</td>
</tr>
<tr>
<td>\DeclareGraphicsRule, 20</td>
</tr>
<tr>
<td>\dgr, 22</td>
</tr>
<tr>
<td>differential, 25</td>
</tr>
<tr>
<td>\displaybreak, 25</td>
</tr>
<tr>
<td>\documentclass, 11</td>
</tr>
<tr>
<td>\draftcopy, 18</td>
</tr>
<tr>
<td>DVI, 4</td>
</tr>
<tr>
<td>e-mail addresses, 22</td>
</tr>
<tr>
<td>encoding, 10</td>
</tr>
<tr>
<td>Enscapsulated Postscript, 4</td>
</tr>
<tr>
<td>\ensuremath, 22</td>
</tr>
<tr>
<td>EPS, 5</td>
</tr>
<tr>
<td>euro, 21</td>
</tr>
<tr>
<td>family, 10</td>
</tr>
<tr>
<td>float, 20</td>
</tr>
<tr>
<td>\foo, 1</td>
</tr>
<tr>
<td>\footnotesize, 24</td>
</tr>
<tr>
<td>Frodo, see Baggins</td>
</tr>
<tr>
<td>Ghostscript, 3</td>
</tr>
<tr>
<td>ghostscript, 3, 4</td>
</tr>
<tr>
<td>GNU, 13</td>
</tr>
<tr>
<td>Greek, 26</td>
</tr>
<tr>
<td>Homer Simpson, 17</td>
</tr>
<tr>
<td>\href, 6</td>
</tr>
<tr>
<td>HTML, 13, 14</td>
</tr>
<tr>
<td>\Huge, 24</td>
</tr>
<tr>
<td>\huge, 24</td>
</tr>
<tr>
<td>\hypertarget, 7</td>
</tr>
<tr>
<td>Hypertext Markup Language, 14</td>
</tr>
<tr>
<td>hyphenation, 2</td>
</tr>
<tr>
<td>\includegraphics, 20, 22</td>
</tr>
<tr>
<td>\index, 17</td>
</tr>
<tr>
<td>\index, 17</td>
</tr>
<tr>
<td>\input, 14</td>
</tr>
<tr>
<td>interdimensional spacing, 18</td>
</tr>
<tr>
<td>\label, 6</td>
</tr>
<tr>
<td>landscape, 8</td>
</tr>
<tr>
<td>\LARGE, 24</td>
</tr>
<tr>
<td>\Large, 24</td>
</tr>
<tr>
<td>\large, 24</td>
</tr>
<tr>
<td>\LaTeX, 19</td>
</tr>
<tr>
<td>\LaTeXe, 19</td>
</tr>
<tr>
<td>\linenumber, 17</td>
</tr>
<tr>
<td>\listfiles, 11</td>
</tr>
<tr>
<td>\lstinline, 18</td>
</tr>
<tr>
<td>\lsetset, 18</td>
</tr>
<tr>
<td>\mathbb, 26</td>
</tr>
<tr>
<td>\mathbf, 26</td>
</tr>
<tr>
<td>\mathcal, 26</td>
</tr>
<tr>
<td>\mathfrak, 26</td>
</tr>
<tr>
<td>\mathit, 26</td>
</tr>
<tr>
<td>\mathnormal, 26</td>
</tr>
<tr>
<td>\mathrm, 26</td>
</tr>
<tr>
<td>\mathsc, 26</td>
</tr>
<tr>
<td>\mathsf, 26</td>
</tr>
<tr>
<td>\mathtt, 26</td>
</tr>
<tr>
<td>METAFONT, 17</td>
</tr>
<tr>
<td>\MF, 19</td>
</tr>
<tr>
<td>\MF, 17, 19</td>
</tr>
<tr>
<td>\mi, 25</td>
</tr>
<tr>
<td>micron, 25</td>
</tr>
<tr>
<td>mime-type, 6</td>
</tr>
<tr>
<td>\mpi, 25</td>
</tr>
<tr>
<td>natural logarithm, 25</td>
</tr>
<tr>
<td>includegraphics, 21</td>
</tr>
<tr>
<td>New Font Selection Scheme, 10</td>
</tr>
<tr>
<td>\nolinenumber, 17</td>
</tr>
<tr>
<td>\normalsize, 24</td>
</tr>
<tr>
<td>NSF, 3</td>
</tr>
<tr>
<td>Oberdiek, Heiko, 7</td>
</tr>
<tr>
<td>\ordinal, 11</td>
</tr>
<tr>
<td>\pagewiselinenumbering, 17</td>
</tr>
</tbody>
</table>
INDEX

Palatino, 25
PDF, 3, 5
PDF toolkit, 7
PDFtk, 7
pi, 25
\pi, 25
\pmb, 25, 26
 posters, 4
PostScript, 5
Postscript, 3–5

quark, 17, 17
\ref, 6, 17
\rightlinenumber, 17
rotate, 8

Saxon, 13
\scriptsize, 24
series, 10
shape, 10
Simpson, Homer, 17, 17
size, 10
\small, 24
special characters, 14
\symbol, 11

tables, 8
\TeX, 19
\TeXInfo, 5, 11
\TeXInfo, 19
\textbf, 24
\texteuro, 21
\textfrak, 24
\textgoth, 24
\textit, 24
\textmd, 24
\textonehalf, 21
\textheight, 21
\textregistered, 21
\textsc, 24
\textregistered, 21
\textservice, 21
\textsf, 24
\textsl, 24
\textswab, 24
\textthreequarters, 21
\texttrademark, 21
\texttt, 24
\textup, 24
thumbnails, 7
Times, 25
times, 11
\tiny, 24

Ubuntu, 2
URL, 6
URLs, 11, 22
\usefont, 10
\usepackage, 14

van Zandt, Timothy, 18

World Wide Web, 6

XSLT, 13
\texttt, 11